Asymptotic runtime testing

November 25, 2020 Christopher Skane <chrisk3@umbc.edu>

Contents

|1 Introductioﬂ

E Methodg

D.1 Genera! ...
2.2 Numerid e e e e
|3 Efﬁciencies{

B.l 0O(1) - Constantl
311 Mathl
3.1.2 Pseudo—code{
8.2 O(n)-linean
3.3 O(nP) - Generalized ex 30nent|
3.4 O(log,n) - Logarithmid

3.5 O(nPlog,n) - Polynomial 10garithmid
3.6 O(nPy/n) - Polynomial Toot] o oo o

1 Introduction

The goal of this is to provide explanation and demonstration of how one can approach the
testing of the asymptotic efficiency of code. I will discuss a general approach to help determine the
nature of the test, then go over many of the common efficiencies with examples.

2 Methods

2.1 General

The primary method I will discuss deals with choosing a scalar o # 0, for some fixed N, and
finding the sequence of ratios of the elapsed runtime.

Suppose we want to test the asymptotic runtime of a function f, which we expect to have an
asymptotic efficiency of O(g(NN)). Then let N be the number of times we call this function in a given
trial. We should then expect the runtime of these IV calls to have an efficiency of O(N - g(NV)). Let
us define a function t(N) := N - g(N), which will represent the ideal time of these N function calls;

ideal here means every operation takes exactly g(IN) units of time. Lastly, we define a sequence
(Bk) such that

t(a*N)
=—— k=1,....M
5]’6 t(ak_lN)ﬂ) Y

where M is the total number of trials run. It may also be viable to instead define the sequence

(Br) as
Br =t(N +ak)—t(N+alk—-1)), k=1,....M

with a linearly scaling value. A linear scaling value is only really useful if ¢(/V) is a linear map
(read "function”), since you can separate the sums and scalars.

The goal is to give us a method to accurately estimate some .1, given the sequence {f1,. .., Ok},
through simple means.

2.2 Numeric

[To be completed. Deals with curve fitting]

3 Efficiencies

3.1 O(1) - Constant
3.1.1 Math

Using the notation introduced in @, we have some function, f, which we expect to have O(1)
(i.e constant) efficiency. So our time function ¢(N) = N - 1. So the sequence (%) becomes
(a*N) -1

o= Finy1 @

in other words, we should expect a constant sequence as the total operation count rises.

0~ O UL W

NN DNDNDNDDR R = e e
U W N O OO U W —=O©o

Since t(NV) is linear, we could also have (5j) be
Br=(N+ak)-1-(N+alk—1)) - 1=«

which is the same constant sequence as above.

Given that both sequences are equivalent, it would be preferrable to use the latter sequence to
avoid exponentially large N values. The caviat being that the sequence may not be close to the
exact value «, but will still be a constant sequence.

3.1.2 Pseudo-code

M:=5

N := 100

a := 10

T := [1..M] of double

//#%— Loop over M trials , collecting the times
for k = 1..M do

start := time ()

for i = 1..N do
fn(i)

end

stop := time()

T[t] := stop — start

N := N+ a

end

//#%— Check that the difference in times is (nearly) constant

B := [1..(M—1)] of double
for k = 1..(M-1) do
B[k] := T[k+1] — T[k]
print (B[k])
end

3.2 O(n) - linear

Using the notation introduced in Ell, we expect our function f to have O(n) efficiency. So our
time function ¢(N) = N - N = N2. So the sequence (3;) becomes

6 _ a2kN2 iy
F= o 2t-npnz ~ ¢

and similar to above, we expect a constant sequence with values that are roughly a?.

3.3 O(n?) - Generalized exponent

You often won’t be testing much beyond linear, since O(n?) is not too frequent; it also sucks
to test O(n?) because you'll have an O(n?) timing loop! But for completeness, and because it is
simple, we can generalize the above cases.

We take our function, f, which we expect to have O(nP) efficiency. So our time function
t(N) = N - NP = NP*!. This makes the sequence (8y)

k
- Pk pp+1 _ et
a@+1)(k—1) Np+1

and like before, it is a constant sequence of some power of «.

WARNING: The total wall time for p > 2 can grow very rapidly, well into multiple minutes.
You usually do not need to run for that long to determine a pattern. If you are testing anything
p > 3 or larger, either the problem is inherently inefficient or you messed up badly; do your research
to eliminate the former, as someone way smarter than you has probably figured it out.

3.4 O(log,n) - Logarithmic

As before, we have f which we expect to have O(log, n) efficiency. The time function is then
t(N) = N -log, N. So the sequence (f) is

(a*N) logy(a*N)

B = (o TN)log,(aFIN)

~ logy(a”) 4 log,(N)
= Pr= alogb(ak_l) + log,(N)
klog,(a) + logy (V)
(k — 1) logy(a) + logy(N)
k
k—1

and in order to make our lives easier, we can just take the limit of 8 as k — oo to get

= Bk =

— ﬁk:a

5]€ —
so we can expect B =~ «, which can likely just be further simplified to £ = a.

3.5 O(nPlog,n) - Polynomial logarithmic

Again, the generalization for completeness. We have f which we expect to have O(n? log,n)
efficiency. Then the time function is t(N) = N - NPlog, N = NP*llog N. So the sequence () is

(a(P+DENPH) log, (aF N)

B = (a(p+1)(k—1)Np+1) logb(ak_lN)
log, (a*) + log, (N)
_ P+l b b
= O O g (@R) + logy (V)
k
— Pt
= [r=«]

and just like before we can expect 8 ~ «, which we will simplify to 8, = o?T1.

0~ O UL W

= e e e e e e
© 00 O ULk W - OO

3.6 O(n?y/n) - Polynomial root

To preface, this case is encountered less than the above ones, but the pattern with this document
is completeness. I'll skip the p = 0 case since it’s easier to do the general case.

We have our f which we expect to be O(nPy/n), and so the time function becomes t(N) =
N - NPy/N = NPt1\/N. Then the sequence () is

(P DE NP/ ok N

Br = (a(erl)(kfl)Np—i-l)‘/ak—lN
ok N
— B, = aPt! =

= B ="V

so in order to have nicer numbers, favor square numbers over others for a.

4 Code

Unless stated otherwise, using « € [2,4] is probably good enough for timing while also keeping
the total wall time down. For anything logarithmic, choose a to be the base of the logarithm for
nicer constants.

4.1 Pseudo

If you wish to automate the checking of the values in i (the array B in the code), I have found
that the mean and standard deviation could be used to verify a constant sequence. For this,
you will want some e such that | — F| < €; here p is the standard mean, and E represents the
expected value, as determined by the above math. You ideally want the deviation to be small, in
order to verify that the values are actually clustered close to the mean; you could use €/2, or any
other value, for this purpose.

M:=5

N := 100

a = 2

T := [1..M] of double

//#%— Loop over M trials , collecting the times

S :=N
for k = 1..M do
start := time()
for i = 1..S do
fn(i)
end
stop := time()
T[t] := stop — start

S := N x a”(k+1)
end

20
21
22
23
24
25
26

0~ O T W

//#%— Check the ratio of times
B := [1..(M—1)] of double
for k = 1..(M-1) do
B[k] := T[k+1] / T[k]
print (B[k])
end

4.2 CH+

#include<ctime>
#include <cmath>
#include<iostream>

using std::cout;
using std::endl;

// O(1) function
long con(long x){

return xxx — 2xx + 1.0; // Help avoid minor optimization
}

// O(n) function
long lin (long x){
long total = 0;
for (long i = 0;i < x;i++){
total 4= 2xi; // Not just i, to hopefully avoid optimization
}

return total;

}

// O(log_2 n) function
long logn(long x){

double s = x;
long ¢ = 0;
while(s > 1.0){
s /= 2;
c += 1;
}

return c;

}

// Arithmetic mean
double mean(double xarr, long n){
if (arr = nullptr || n = 0) return NAN;

double total = 0.0;

for (long i = 0;i < n;i++){
total += arr[i];

}

return total / n;

}

// Standard deviation

45 | double stdev(double *arr, long n){

46 if (arr = nullptr || n = 0) return NAN;

47

48 double mu = mean(arr, n);

49 double total = 0.0;

50 for(long i = 0;i < n;i++){

51 total 4= (mu — arr[i]) * (mu — arr[i]);
52 }

53 return sqrt(total / n);

54 |}

55

56 |int main(){

57 const long M= 5; // Number of trials

58 const long N = 1000; // Iterations per trial
59 const long a = 2; // Scaling value

60 double T[M]; // Result time array

61

62 long (*fn)(long) = logn; // function to test
63 // a~2 for linear, ~a for logarithmic, and a for constant
64 double expect = a;

65

66 /* Trial loop

67 * /

68 long S =N; // Scratch variable to leave N unchanged
69 long res;

70 long a_it = a; // Used to avoid calling pow ()
71 clock_t start ,stop;

72 for(long k = 0;k < M;k++){

73 cout << "Trial 7 << k41 << 7 with N = 7 << S << endl;
74

75 // Call loop

76 start = clock ();

7 for(long i = 0;i < S;i++){

78 res = fn(i);

79 }

80 stop = clock ();

81

82 // Get results

83 T[k] = (stop — start);

84

85 // lterate things

86 S =N % a_it;

87 a_ it x= a;

88 }

89

90 // T array dump

91 cout << "T =" << endl;

92 for (long i = 0;i < M;i++){

93 cout << 7 7 << T[i] << endl;

94 }

95

96 // Calculate ratios

97 double B[M—1];

98 for (long k = 0;k < (M=1);k++){

99 B[k] = (T[k+1] / T[k]);

100 }

101

102 // B array dump

103 cout << "B =" << endl;

104 for(long i = 0;i < M=1;i4++){

105 cout << 7 7 << B[i] << endl;

106 }

107

108 // Calculate the suggested values

109 double mu = mean (B, M—1);

110 double dev = stdev (B, M—1);

111 cout << "Mean = 7 << mu << endl;

112 cout << ”"Std dev = 7 << dev << endl;

113

114

115 // Values subject to vary (wildly) depending on system and test
116 double mu_eps = 0.5;

117 double dev_eps = mu_eps;

118 bool pass = abs(mu — expect) < mu_eps && dev < dev_eps;
119

120 cout << "Test 7 << ((pass) ? "succeeded!” : "FAILED!”) << endl;
121 |}

X~ O T W

U O O O i B B B B B R B R R W W W W W W W wwwhhoNhNNDNDRNDNDNDDLD = o = = e
WN OO UR WN OO UUR WN O OO Utk WN O O©OOO U W~ O©o

4.3 Python

import numpy as np
from time import time

def const (x):

return xxx — 2%x + 1 # Help avoid minor optimization
def lin (x):
total = 0
for i in range(x):
total += 2%i # Not just i, to hopefully avoid optimization out
return total

def logn(x):

s = X
c =20
while s > 1.0:
s /= 2
c +=1

return c¢

constant — N=16000 and a=4 is close to stdev below 0.1
lin — N=500 and a=3 works, but is slow
logn — N=4000 and a=3 gives consistent stdev below 0.1
M=5
N = 500
a=3
T =[]
fn = logn
S =N
for k in range(M):
print (?Trial”, k+1)
start = time ()

for i in range(S):

res = fn (i)
stop = time ()

T.append(stop — start)
S =N % axx(k+1)

print (T)

B = [(T[k+1] / T[k]) for k in range(M—1)]
print (B)

arr = np.array (B)

dev = np.std(arr)

mean = np.mean(arr)
print ("Mean =", mean)
print (?Std dev =", dev)

	Introduction
	Methods
	General
	Numeric

	Efficiencies
	O(1) - Constant
	Math
	Pseudo-code

	O(n) - linear
	O(np) - Generalized exponent
	O(logb n) - Logarithmic
	O(np logb n) - Polynomial logarithmic
	O(np n) - Polynomial root

	Code
	Pseudo
	C++
	Python

