// UMBC - CMSC 341 - Fall 2024 - Proj1 #ifndef SNAKES_H #define SNAKES_H #include #include #include #include #include #include #include //used to get the current time using namespace std; class Grader;//this class is for grading purposes, no need to do anything class Tester;//this is your tester class, you add your test functions in this class class Snakes; const int NOGAME = 0; const int PLAYER1TURN = 1; const int PLAYER2TURN = 2; enum RANDOM {UNIFORMINT, UNIFORMREAL, NORMAL, SHUFFLE}; class Random { public: Random(){} Random(int min, int max, RANDOM type=UNIFORMINT, int mean=50, int stdev=20) : m_min(min), m_max(max), m_type(type) { if (type == NORMAL){ //the case of NORMAL to generate integer numbers with normal distribution m_generator = std::mt19937(m_device()); //the data set will have the mean of 50 (default) and standard deviation of 20 (default) //the mean and standard deviation can change by passing new values to constructor m_normdist = std::normal_distribution<>(mean,stdev); } else if (type == UNIFORMINT) { //the case of UNIFORMINT to generate integer numbers // Using a fixed seed value generates always the same sequence // of pseudorandom numbers, e.g. reproducing scientific experiments // here it helps us with testing since the same sequence repeats m_generator = std::mt19937(10);// 10 is the fixed seed value m_unidist = std::uniform_int_distribution<>(min,max); } else if (type == UNIFORMREAL) { //the case of UNIFORMREAL to generate real numbers m_generator = std::mt19937(10);// 10 is the fixed seed value m_uniReal = std::uniform_real_distribution((double)min,(double)max); } else { //the case of SHUFFLE to generate every number only once m_generator = std::mt19937(m_device()); } } void setSeed(int seedNum){ // we have set a default value for seed in constructor // we can change the seed by calling this function after constructor call // this gives us more randomness m_generator = std::mt19937(seedNum); } void init(int min, int max){ m_min = min; m_max = max; m_type = UNIFORMINT; m_generator = std::mt19937(10);// 10 is the fixed seed value m_unidist = std::uniform_int_distribution<>(min,max); } void getShuffle(vector & array){ // this function provides a list of all values between min and max // in a random order, this function guarantees the uniqueness // of every value in the list // the user program creates the vector param and passes here // here we populate the vector using m_min and m_max for (int i = m_min; i<=m_max; i++){ array.push_back(i); } shuffle(array.begin(),array.end(),m_generator); } void getShuffle(int array[]){ // this function provides a list of all values between min and max // in a random order, this function guarantees the uniqueness // of every value in the list // the param array must be of the size (m_max-m_min+1) // the user program creates the array and pass it here vector temp; for (int i = m_min; i<=m_max; i++){ temp.push_back(i); } std::shuffle(temp.begin(), temp.end(), m_generator); vector::iterator it; int i = 0; for (it=temp.begin(); it != temp.end(); it++){ array[i] = *it; i++; } } int getRandNum(){ // this function returns integer numbers // the object must have been initialized to generate integers int result = 0; if(m_type == NORMAL){ //returns a random number in a set with normal distribution //we limit random numbers by the min and max values result = m_min - 1; while(result < m_min || result > m_max) result = m_normdist(m_generator); } else if (m_type == UNIFORMINT){ //this will generate a random number between min and max values result = m_unidist(m_generator); } return result; } double getRealRandNum(){ // this function returns real numbers // the object must have been initialized to generate real numbers double result = m_uniReal(m_generator); // a trick to return numbers only with two deciaml points // for example if result is 15.0378, function returns 15.03 // to round up we can use ceil function instead of floor result = std::floor(result*100.0)/100.0; return result; } string getRandString(int size){ // the parameter size specifies the length of string we ask for // to use ASCII char the number range in constructor must be set to 97 - 122 // and the Random type must be UNIFORMINT (it is default in constructor) string output = ""; for (int i=0;i m_normdist;//normal distribution std::uniform_int_distribution<> m_unidist;//integer uniform distribution std::uniform_real_distribution m_uniReal;//real uniform distribution }; class Cell{ public: friend class Grader; friend class Tester; friend class Snakes; Cell():m_cellID(0), m_next(nullptr), m_north(nullptr), m_south(nullptr){} Cell(int id):m_cellID(id), m_next(nullptr), m_north(nullptr), m_south(nullptr){} ~Cell(){} void setID(int id){m_cellID = id;} int getID(){return m_cellID;} void setNorth(Cell * aNode){m_north = aNode;} Cell * getNorth(){return m_north;} void setSouth(Cell * aNode){m_south = aNode;} Cell * getSouth(){return m_south;} void setNext(Cell * aNode){m_next=aNode;} Cell * getNext(){return m_next;} private: int m_cellID; Cell * m_next; Cell * m_north; // used to store a ladder destination Cell * m_south; // used to store a snake destination }; class Snakes{ public: friend class Grader; friend class Tester; Snakes(); Snakes(int boardSize); ~Snakes(); void clear(); int rollDice(); bool play(int dice); void reStart(); bool makeDefaultBoard(int boardSize); void makeRandomBoard(int boardSize, int numSnakesLadders); int whoseTurn() {return m_playerTurn;} void dumpBoard(); const Snakes & operator=(const Snakes & rhs); private: Cell * m_start; // pointer to the first cell of the board Random m_dice; // random number generator between 1 and 6 Cell * m_player1; // current location on the board Cell * m_player2; // current location on the board int m_playerTurn; // set to 1 when it is player1 turn, 0 means there is no game /****************************************** * Private function declarations go here! * ******************************************/ }; #endif